“Misfolding and Aggregation of Yeast Prion Protein Sup35p Using Atomic Force Microscopy and Complementary Biophysical Methods”

Protein misfolding and its subsequent aggregation is the cause of many diseases including Alzheimer’s disease, Huntington’s, Parkinson’s, and prion diseases, which affect millions of people worldwide. The protein aggregation that results from these diseases is a complex process which proceeds via many intermediate states including oligomers, strings of oligomers and fibrils. Atomic Force Microscopy (AFM) and complimentary biophysical techniques were used here to follow misfolding, aggregation and peptide-peptide interactions of a short fragment of Sup35 (GNNQQNY), shown to be a key sequence in the aggregation of the entire protein.

AFM is capable of probing changes in protein folding that can lead to aggregation, and can open more possibilities for better understanding the molecular mechanisms of neurodegenerative diseases.

Seminar hosted by Dr. Tino Hofmann, UNL Department of Electrical Engineering

The University of Nebraska–Lincoln is an equal opportunity educator and employer.